Journal Press India®

Unmasking the Twitterverse: Analyzing Sentiments towards DeFi

Vol 11 , Issue 1 , January - June 2024 | Pages: 36-57 | Research Paper  

 
Article has been added to the cart.View Cart (0)
https://doi.org/10.17492/jpi.mudra.v11i1.1112403


Author Details ( * ) denotes Corresponding author

1. Nidhi Walia, Assistant Professor, USAM, Punjabi University, Patiala, Punjab, India (nidhiwalia79@gmail.com)
2. * Poonam Bandha, Research Scholar, USAM, Punjabi University, Patiala, Punjab, India (poonambhardwaj948@gmail.com)
3. Naina Goyal, Research Scholar, USAM, Punjabi University, Patiala, Punjab, India (nainagoyal0018@gmail.com)

This paper investigates netizens’ viewpoints on Decentralized Finance (DeFi) using emotion theory and lexicon sentiment analysis via machine learning. The data of 15,000 tweets on DeFi is gathered through automated web-scraping. Emotion score is evaluated through sentiment lexicon analysis and includes anger, anticipation, disgust, fear, joy, sadness, surprise, trust, and primary sentiments. The supervised machine learning reveals a score of 47,054 sentiments from 15,000 tweets, showing predominantly positive and trust sentiments in the sample. The positive sentiment may describe potential of Decentralized market. Meanwhile, trust emotion was indicative of the market’s response to the transparency and security of the DeFi system. This study contributes to theoretically explaining the implications of the DeFi phenomenon under the lens of emotion theory.

Keywords

Decentralized Finance (DeFi); Open Finance; Emotion Theory; Machine Learning; RStudio; Sentiment Analysis; Text Mining; Opinion Mining; Twitter; NLP; Twitter Analysis

  1. Abdulhakeem, S. A. & Hu, Q. (2021). Powered by blockchain technology, DeFi (Decentralized Finance) strives to increase financial inclusion of the unbanked by reshaping the world financial system. Modern Economy, 12(01), 1–16.
  2. Bala, D. E. & Stancu, S. (2023). Using Twitter data and Lexicon-based sentiment analysis to study the attitude towards Cryptocurrency market and blockchain technology. Smart Innovation, Systems and Technologies, 321(January), 187–198. Retrieved from https://doi.org/10.1007/978-981-19-6755-9_15
  3. Based, T. R. & Client, T. (2022). Package ‘twitteR’. Retrieved from https://cran.r-project.org/web/packages/twitteR/twitteR.pdf
  4. Broatch, J. E., Dietrich, S. & Goelman, D. (2019). Introducing data science techniques by connecting database concepts and dplyr. Journal of Statistics Education, 27(3), 147-153. Retrieved from https://doi.org/10.1080/10691898.2019.1647768
  5. Cerda, G. C. & Reutter, J. L. (2019). Bitcoin price prediction through opinion mining. The web conference 2019 - Companion of the World Wide Web conference, 755–762. Retrieved from https://doi.org/10.1145/3308560.3316454
  6. CRAN. (2022a). Package ‘stringr’. Retrieved from https://cran.r-project.org/web /packages/stringr/readme/README.html
  7. CRAN. (2022b). Package ‘syuzhet’. Retrieved from https://cran.r-project.org/web/ packages/syuzhet/vignettes/syuzhet-vignette.html
  8. CRAN. (2022c). Package ‘wordcloud’. Retrieved from https://cran.r-project.org/web /packages/wordcloud/wordcloud.pdf
  9. CRAN. (2023). Package ‘tm’. Retrieved from https://cran.r-project.org/web/packages/tm /tm.pdf
  10. DeFiPulse. (2023). Retrieved from https://www.coinbase.com/price/defi-pulse-index# MarketStatsSection
  11. Demšar, J., Zupan, B., Leban, G., & Curk, T. (2004). Orange: From experimental machine learning to interactive data mining. Knowledge Discovery in Databases: PKDD 2004, 537–539. Retrieved from https://doi.org/10.1007/978-3-540-30116-5_58
  12. Feldman, R., Gresko, M., Kinar, Y., Lindell, Y., Liphstat, O., Rajman, M., Schler, Y. & Zamir, O. (1998). Text mining at the term level. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1510, 65–73. Retrieved from https://doi.org/10.1007/bfb0094806
  13. Goel, A., & Mittal, A. (2012). Stock prediction using twitter sentiment analysis. Standford University. Retrieved from http://cs229.stanford.edu/proj2011/GoelMittal-StockMarketPredictionUsingTwitterSentimentAnalysis.pdf
  14. Gramlich, V., Guggenberger, T., Principato, M., Schellinger, B., & Urbach, N. (2023). A multivocal literature review of decentralized finance. In Electronic Markets (Vol. 2022). Springer Berlin Heidelberg. Retrieved from https://doi.org/10.1007/s12525-023-00637-4
  15. Gupta, V. & Lehal, G. S. (2009). A survey of text mining techniques and applications. Journal of Emerging Technologies in Web Intelligence, 1(1), 60–76. Retrieved from https://doi.org/10.4304/jetwi.1.1.60-76
  16. Hassan, M. K., Hudaefi, F. A., & Caraka, R. E. (2022). Mining netizen’s opinion on cryptocurrency: Sentiment analysis of Twitter data. Studies in Economics and Finance, 39(3), 365–385. Retrieved from https://doi.org/10.1108/SEF-06-2021-0237
  17. Higgins, L. (2022). . Retrieved from https://norma.nci rl.ie/6131/%0Ahttps://norma.ncirl.ie/6131/1/liamhiggins.pdfPackage
  18. Hotho, A., Nürnberger, A., & Paaß, G. (2005). A brief survey of text mining. Journal for Language Technology and Computational Linguistics, 20(1), 19-62. Retrieved from https://www.researchgate.net/publication/215514577_A_Brief_Survey_of_Text_Mining
  19. Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphics Statistics, 5(3), 299-314. Retrieved from https://doi.org/10.2307/1390807
  20. Jena, T., Williams, G., & Lin, W. (2022). Package ‘pmml’ R topics documented. Retrieved from https://cran.r-project.org/web/packages/pmml/pmml.pdf
  21. Jensen, J. R., von Wachter, V., & Ross, O. (2021). An introduction to Decentralized Finance (DeFi). Complex Systems Informatics and Modeling Quarterly, 26, 46–54. Retrieved from https://doi.org/10.7250/csimq.2021-26.03
  22. Katona, T. (2021). Decentralized Finance : The possibilities of a blockchain “Money Lego” system. Financial and Economic Review, 20(1), 74–102. Retrieved from https://doi.org/10.33893/fer.20.1.74102
  23. Lang, D. T. (2009). Journal of statistical software R as a web client-the RCurl package. Journal of Statistical Software, VV(2), 1–42. Retrieved from http://wwww.omegahat.org/ RCurl/index.html.
  24. Li, W., Bu, J., Li, X., Peng, H., Niu, Y., & Zhang, Y. (2022). A survey of DeFi security: Challenges and opportunities. Journal of King Saud University-Computer and Information Sciences, 34(10), 10378–10404. Retrieved from https://doi.org/10.1016/ j.jksuci.2022.10.028
  25. Liu, B., & Hu, M. (2004). Opinion mining, sentiment analysis and opinion spam detection Dosegljivo. Retrieved from https://www.cs.uic.edu/liub/FBS/sentiment-analysis.html#lexicon
  26. Meegan, X., & Koens, T. (2021). Lessons learned from Decentralised Finance (DeFi). Retrieved from https://new.ingwb.com/binaries/content/assets/insights/themes/distribute d-ledger-technology/defi_white_paper_v2.0.pdf
  27. Meyer, E. A. (2022). Decentralized Finance – A systematic literature review and research directions. ECIS 2022 Research Papers. Retrieved from https://aisel.aisnet.org/ ecis2022_rp/25
  28. Mittal, A., Dhiman, V., Singh, A. & Prakash, C. (2019). Short-term Bitcoin price fluctuation prediction using social media and web search data. 2019 12th International Conference on Contemporary Computing, IC3 2019. Retrieved from https://doi.org/10.1 109/IC3.2019.8844899
  29. Mohammad, S. M. & Turney, P. (2010). Emotions evoked by common words and phrases: Using mechanical turk to create an emotion lexicon. Proceedings of the NAACL-HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text. Retrieved from https://aclanthology.org/W10-0204/
  30. Mohammad, S. M., Kiritchenko, S., & Zhu, X. (2013). NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets. SEM 2013 - 2nd Joint Conference on Lexical and Computational Semantics, 2, 321–327.
  31. Naldi, M. (2019). A review of sentiment computation methods with R packages. Retrieved from http://arxiv.org/abs/1901.08319
  32. Nielsen, F. Å. (2011). AFINN. Retrieved from www2.imm.dtu.dk/pubdb/pubs/6010-full.html
  33. Pagolu, V. S., Reddy, K. N., Panda, G., & Majhi, B. (2017). Sentiment analysis of Twitter data for predicting stock market movements. International Conference on Signal Processing, Communication, Power and Embedded System, SCOPES 2016-Proceedings, 1345–1350. Retrieved from https://doi.org/10.1109/SCOPES.2016.7955659
  34. Piñeiro-Chousa, J., López-Cabarcos, M. Á., Sevic, A., & González-López, I. (2022). A preliminary assessment of the performance of DeFi cryptocurrencies in relation to other financial assets, volatility, and user-generated content. In Technological Forecasting and Social Change (Vol. 181). Retrieved from https://doi.org/10.1016/j.techfore.2022.121740
  35. Piñeiro-Chousa, J., Šević, A., & González-López, I. (2023). Impact of social metrics in decentralized finance. Journal of Business Research, 158, 113673. Retrieved from https://doi.org/10.1016/j.jbusres.2023.113673
  36. Rahman, S., Hemel, J. N., Junayed, S. A. A., Muhee, H. Al. & Uddin, J. (2019). Sentiment analysis using R: An approach to correlate cryptocurrency price fluctuations with change in user sentiment using machine learning. 2018 Joint 7th International Conference on Informatics, Electronics and Vision and 2nd International Conference on Imaging, Vision and Pattern Recognition, ICIEV-IVPR 2018, 492–497. Retrieved from https://doi.org/10.1109/ICIEV.2018.8641075
  37. Rao, T., & Srivastava, S. (2012). Analyzing stock market movements using Twitter sentiment analysis. Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining, 119–123. Retrieved from http://dl.acm.org/ citation.cfm?id=2456719.2456923
  38. Schneider, G. M. (1975). DSCL - A data specification and conversion language for networks. In Proceedings of the 1975 ACM SIGMOD International Conference on Management of Data (pp. 139-148).
  39. Stepanova, V., & Eriņš, I. (2021). Review of decentralized finance applications and their total value locked. TEM Journal, 10(1), 327–333. Retrieved from https://doi.org/10.184 21/TEM101-41
  40. Tao, R. & Brooks, C, (2019). Python guide to accompany introductory econometrics for finance (October 25, 2019). Retrieved from https://ssrn.com/abstract=3475303
  41. Thiel, K. (2006). The KNIME text processing plugin. Retrieved from https://www.kni me.com/sites/default/files/KNIME-TextProcessing-HowTo.pdf
  42. Zeigler-hill, V., & Shackelford, T. K. (2016). Encyclopedia of personality and individual differences. Encyclopedia of Personality and Individual Differences. Retrieved from https://doi.org/10.1007/978-3-319-28099-8
  43. Zetzsche, D. A., Arner, D. W. & Buckley, R. P. (2020). Decentralized finance. Journal of Financial Regulation, 6(2), 172–203.
Abstract Views: 2
PDF Views: 4

Related Article
Business Education Sustainability: Academicians' Perspective in an Emerging Economy
Dr. Manisha Gupta, Mrs. Reena Kovid, Dr. Himani Gupta

News/Events

Dept. of MBA, Karnat...

Department of MBA, KLS, Gogte Institute of Technology, Belagavi Org...

Indira School of Bus...

Indira School of Mangement Studies PGDM, Pune Organizing Internatio...

Indira Institute of ...

Indira Institute of Management, Pune Organizing International Confe...

D. Y. Patil Internat...

D. Y. Patil International University, Akurdi-Pune Organizing Nation...

ISBM College of Engi...

ISBM College of Engineering, Pune Organizing International Conferen...

Periyar Maniammai In...

Department of Commerce Periyar Maniammai Institute of Science &...

Institute of Managem...

Vivekanand Education Society's Institute of Management Studies ...

Institute of Managem...

Deccan Education Society Institute of Management Development and Re...

S.B. Patil Institute...

Pimpri Chinchwad Education Trust's S.B. Patil Institute of Mana...

D. Y. Patil IMCAM, A...

D. Y. Patil Institute of Master of Computer Applications & Managem...

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.