Journal Press India®

Enhancing Robot Dynamics Control for Accuracy and Effectiveness using Genetic Algorithms

Vol 7 , Issue 1 , January - June 2024 | Pages: 8-13 | Research Paper  

https://doi.org/10.51976/jfsa.712402


Author Details ( * ) denotes Corresponding author

1. Rasiyawan Yadav, Manager, National Thermal Power Corporation Limited, New Delhi, Delhi, India
2. * Preet Lata, Assistant Professor, Department of Electrical Engineering, NIT, Kurukeshtra, Haryana, India (preetklata@gmail.com)

In this paper evaluated the effectiveness of a genetic algorithm (GA) in reducing error in robot dynamics control. Experiments demonstrate that GAs are useful in determining the optimal robot designs, yielding results with lower error rates and higher precision. Notably, the method just requires position feedback and the final equations of the dynamic model's links, eliminating the need for speed and acceleration data, which typically lead to significant identification errors. Using the advances in computer technology, this deficit might eventually disappear, albeit it could take longer. Future studies should include cost considerations in the objective function to solve the deterministic and random faults in the model.

Keywords

GA, Optimization, intelligent control, Metaheuristic, modelling, nonlinear

  1. Yang, H., Liu, H., Zou, J., Yin, Z., Liu, L., Yang, G., Ouyang, X. and Wang, Z. eds., 2023. Intelligent Robotics and Applications: 16th International Conference, ICIRA 2023, Hangzhou, China, July 5–7, 2023, Proceedings, Part II (Vol. 14268). Springer Nature.
  2. Ge, S.S., Lee, T.H. and Zhu, G., 1996. Genetic algorithm tuning of Lyapunov-based controllers: An application to a single-link flexible robot system. IEEE Transactions on Industrial Electronics, 43(5), pp.567-574.
  3. Bakdi, A., Hentout, A., Boutami, H., Maoudj, A., Hachour, O. and Bouzouia, B., 2017. Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robotics and Autonomous Systems, 89, pp.95-109.
  4. Deif, S., Kamal, H.A. and Tawfik, M., 2012. Enhancing genetic algorithms using a dy-namic mutation value approach: An application to the control of flexible Robot Systems. International Journal of Artificial Intelligent Systems and Machine Learning, 4(1), pp.9-16.
  5. Mucientes, M., Moreno, D.L., Bugarín, A. and Barro, S., 2007. Design of a fuzzy controller in mobile robotics using genetic algorithms. Applied Soft Computing, 7(2), pp.540-546.
  6. Wang, B., Fang, J., Qi, S., Wang, L., Liu, X. and Ren, H., 2023. Step-by-step identification of industrial robot dynamics model parameters and force-free control for robot teaching. Journal of Mechanical Science and Technology, 37(7), pp.3747-3762.
  7. Jaen-Cuellar, A.Y., de J. Romero-Troncoso, R., Morales-Velazquez, L. and Osornio-Rios, R.A., 2013. PID-controller tuning optimization with genetic algorithms in servo systems. International Journal of Advanced Robotic Systems, 10(9), p.324.
  8. Qu, H., Xing, K. and Alexander, T., 2013. An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots. Neurocomputing, 120, pp.509-517.
  9. Costa, G., Pinho, J., Botto, M.A. and Lima, P.U., 2023. Online learning of MPC for autonomous racing. Robotics and Autonomous Systems, 167, p.104469.
  10. Shi, P. and Cui, Y., 2010, May. Dynamic path planning for mobile robot based on genetic algorithm in unknown environment. In 2010 Chinese control and decision conference (pp. 4325-4329). IEEE.
  11. Juang, C.F., 2002. A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Transactions on Fuzzy Systems, 10(2), pp.155-170.
  12. Thaseen Ikram, S., Mohanraj, V., Ramachandran, S. and Balakrishnan, A., 2023. An intelligent waste management application using IoT and a genetic algorithm–fuzzy inference system. Applied Sciences, 13(6), p.3943.
  13. Nazarahari, M., Khanmirza, E. and Doostie, S., 2019. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm. Expert Systems with Applications, 115, pp.106-120.
  14. Silva, L., Bellon, O.R.P. and Boyer, K.L., 2005. Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE transactions on pattern analysis and machine intelligence, 27(5), pp.762-776.
  15. Suwarno, I., Cakan, A., Raharja, N.M., Baballe, M.A. and Mahmoud, M.S., 2023. Current trend in control of artificial intelligence for health robotic manipulator. Journal of Soft Computing Exploration, 4(1).
  16. Yin, X. and Pan, L., 2018. Enhancing trajectory tracking accuracy for industrial robot with robust adaptive control. Robotics and Computer-Integrated Manufacturing, 51, pp.97-102.
  17. Magkoutas, K., Rossato, L.N., Heim, M. and Daners, M.S., 2023. Genetic algorithm-based optimization framework for control parameters of ventricular assist devices. Biomedical Signal Processing and Control, 85, p.104788.
  18. Dang, X.K., Do, V.D. and Nguyen, X.P., 2020. Robust adaptive fuzzy control using genetic algorithm for dynamic positioning system. IEEE Access, 8, pp.222077-222092.
  19. Nonoyama, K., Liu, Z., Fujiwara, T., Alam, M.M. and Nishi, T., 2022. Energy-efficient robot configuration and motion planning using genetic algorithm and particle swarm optimization. Energies, 15(6), p.2074.
  20. Liu, X., Jiang, D., Tao, B., Jiang, G., Sun, Y., Kong, J., Tong, X., Zhao, G. and Chen, B., 2022. Genetic algorithm-based trajectory optimization for digital twin robots. Frontiers in Bioengineering and Biotechnology, 9, p.793782.
  21. Jamwal, P.K., Xie, S. and Aw, K.C., 2009. Kinematic design optimization of a parallel ankle rehabilitation robot using modified genetic algorithm. Robotics and Autonomous Systems, 57(10), pp.1018-1027.
  22. Chen, G., Hou, J., Dong, J., Li, Z., Gu, S., Zhang, B., Yu, J. and Knoll, A., 2020. Multiobjective scheduling strategy with genetic algorithm and time-enhanced A* planning for autonomous parking robotics in high-density unmanned parking lots. IEEE/ASME Transactions on Mechatronics, 26(3), pp.1547-1557.
Abstract Views: 1
PDF Views: 44

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.