Journal Press India®

Panel Sizing for Solar PV Panel Area Requirement and Performance at Various Locations

Vol 6 , Issue 2 , July - December 2023 | Pages: 70-77 | Research Paper  

https://doi.org/10.51976/jfsa.622311


Author Details ( * ) denotes Corresponding author

1. Mayank Pant, Senior Advisor HR, Dysmech Competency Services, Pune, Maharashtra, India (Mayankpant@dcsplm.com)
2. * Lalit Kumar SHarma, Senior Advisor HR, Dysmech Competency Services, Pune, Maharashtra, India (Lalit.kumar@dcsplm.com)

The solar photovoltaic (PV) technology used today is one of the most widely used renewable energy generation technologies. This essay compares the PV panel efficiency for some of the same environmental factors at three different Indian locations, Mathura, Ladakh, and Bikaner, at the same time and location. The PV panel has a boost converter integrated in to provide the necessary voltage at the load side. The PV Panel Simulation model is tested while variations in current, voltage, and power at the surface of the panel and at the load are tracked by simulating it with PSIM for different irradiance and temperature. After these figures are obtained, the efficiency of the current panel will change on the basis of the impact of elevated cell temperature and irradiance, as well as the earlier determined panel functioning parameter values. The numerical values of the performance parameters will also dictate the physical dimensions of the PV panel and the area needed for it to generate 1kW of power.

Keywords

photovoltaic, efficiency, fill factor, short circuit, open circuit.

  1. C. Marimuthu, “A Study of Factors Affecting Solar PV Cell through Matlab / Simulink Model This study considers the Grid Interactive Roof Top Solar,” IJRSI, vol. I, no. Iii, pp. 21–25, 2014.
  2. Demolli, H., Dokuz, A. S., Ecemis, A., & Gokcek, M. (2021). Location‐based optimal sizing of hybrid renewable energy systems using deterministic and heuristic algorithms. International Journal of Energy Research45(11), 16155-16175.
  3. Demolli, H., Dokuz, A. S., Ecemis, A., & Gokcek, M. (2021). Location‐based optimal sizing of hybrid renewable energy systems using deterministic and heuristic algorithms. International Journal of Energy Research45(11), 16155-16175.
  4. Usman, Z., Tah, J., Abanda, H., & Nche, C. (2020). A critical appraisal of pv-systems’ performance. Buildings10(11), 192.
  5. Agrawal, M., Chhajed, P., & Chowdhury, A. (2022). Performance analysis of photovoltaic module with reflector: Optimizing orientation with different tilt scenarios. Renewable Energy186, 10-25..
  6. J. Ahmed and Z. Salam, “A Modified P and O Maximum Power Point Tracking Method with Reduced Steady-State Oscillation and Improved Tracking Efficiency,” IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1506–1515, 2016, doi: 10.1109/TSTE.2016.2568043.
  7. Perez-Higueras, P. J., Almonacid, F. M., Rodrigo, P. M., & Fernandez, E. F. (2018). Optimum sizing of the inverter for maximizing the energy yield in state-of-the-art high-concentrator photovoltaic systems. Solar Energy171, 728-739.
  8. Aghamolaei, R., Shamsi, M. H., & O’Donnell, J. (2020). Feasibility analysis of community-based PV systems for residential districts: A comparison of on-site centralized and distributed PV installations. Renewable Energy157, 793-808.
  9. Lupangu, C., & Bansal, R. C. (2017). A review of technical issues on the development of solar photovoltaic systems. Renewable and Sustainable Energy Reviews73, 950-965.
  10. Diab, I., Scheurwater, B., Saffirio, A., Chandra-Mouli, G. R., & Bauer, P. (2022). Placement and sizing of solar PV and Wind systems in trolleybus grids. Journal of Cleaner Production352, 131533.
  11. Awad, H., Salim, K. E., & Gül, M. (2020). Multi-objective design of grid-tied solar photovoltaics for commercial flat rooftops using particle swarm optimization algorithm. Journal of Building Engineering28, 101080.
  12. Mathew, M., Hossain, M. S., Saha, S., Mondal, S., & Haque, M. E. (2022). Sizing approaches for solar photovoltaic‐based microgrids: A comprehensive review. IET Energy Systems Integration4(1), 1-27.
  13. Sreenath, S., Sudhakar, K., Yusop, A. F., Solomin, E., & Kirpichnikova, I. M. (2020). Solar PV energy system in Malaysian airport: Glare analysis, general design and performance assessment. Energy Reports6, 698-712.
  14. Awan, A. B., Zubair, M., & Mouli, K. V. C. (2020). Design, optimization and performance comparison of solar tower and photovoltaic power plants. Energy199, 117450.
  15. Khatib, T., & Muhsen, D. H. (2020). Optimal sizing of standalone photovoltaic system using improved performance model and optimization algorithm. Sustainability12(6), 2233.
  16. Baqir, M., & Channi, H. K. (2022). Analysis and design of solar PV system using Pvsyst software. Materials Today: Proceedings48, 1332-1338.
  17. Chandel, S. S., Naik, M. N., & Chandel, R. (2017). Review of performance studies of direct coupled photovoltaic water pumping systems and case study. Renewable and Sustainable Energy Reviews76, 163-175.
  18. Aghaei, M., Kumar, N. M., Eskandari, A., Ahmed, H., de Oliveira, A. K. V., & Chopra, S. S. (2020). Solar PV systems design and monitoring. In Photovoltaic solar energy conversion (pp. 117-145). Academic Press..
  19. J. Siecker, K. Kusakana, and B. P. Numbi, “A review of solar photovoltaic systems cooling technologies,” Renew. Sustain. Energy Rev., vol. 79, no. May 2018, pp. 192–203, 2017, doi: 10.1016/j.rser.2017.05.053.
Abstract Views: 1
PDF Views: 33

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.