Journal Press India®

Effect of Ultrasonic Pre-treatment on Cow dung Slurry with Sludge Water, Food Waste for Biogas Production in Anaerobic Digesters and Result Validation using Response Surface Methodology

Vol 11 , Issue 2 , April - June 2023 | Pages: 34-42 | Research Paper  

https://doi.org/10.51976/ijari.1122305

| | |


Author Details ( * ) denotes Corresponding author

1. Abhishek Kumar, MTECH, Department of Mechanical Engineering, DTU, New Delhi, Delhi, India
2. * Kiran Pal, Assistant Professor, Department of Mathematics, Delhi Institute of Tool Engineering DSEU Okhla-II Campus, Delhi, India (kiranpaldite@gmail.com)

In this work Ultrasonic pre-treatment was performed on cow dung slurry in anaerobic conditions to observe the methane quality and hydraulic retention time (HRT). Response Surface Methodology (RSM) was used to determine the optimum ultrasonication time, temperature, and hydraulic retention time in this study on the ultrasonic pre-treatment of cow dung for the production of biogas. 13 experimental runs were developed in accordance with Central Composite Design with various set up conditions to observe the Responses, i.e., methane yield produced across 28 days after HRT. This was accomplished with the help of a software programme(Design Expert 12.0.1.0). In order to analyse the effects of the variables and their interactions to establish their optimal values, quadratic models for the responses were created, and a 3D response surface map was generated. The sonication time, temperature, and retention period following HRT were determined by numerical optimisation to be 35 minutes, 60°C, and 8 days, respectively.

Keywords

Cow dung; Sludge water; Food waste; Ultrasonic treatment; Biogas; RSM; Methane; Anaerobic digesters

  1. Aylin Alagöz, B., Yenigün, O., & Erdinçler, A. (2018a). Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment. Ultrasonics Sonochemistry, 40, 193–200. https://doi.org/ 10.1016/j.ultsonch.2017.05.014
  2. Aylin Alagöz, B., Yenigün, O., & Erdinçler, A. (2018b). Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment. Ultrasonics Sonochemistry, 40, 193–200. https://doi.org/ 10.1016/j.ultsonch.2017.05.014
  3. Azman, S., Milh, H., Somers, M. H., Zhang, H., Huybrechts, I., Meers, E., Meesschaert, B., Dewil, R., & Appels, L. (2020). Ultrasound-assisted digestate treatment of manure digestate for increased biogas production in small pilot scale anaerobic digesters. Renewable Energy, 152, 664–673. https://doi.org /10.1016/j.renene.2020.01.096
  4. Chun, C. W., Jamaludin, N. F. M., & Zainol, N. (2015). Optimization of biogas production from poultry manure wastewater in 250 ML flasks. Jurnal Teknologi, 75(1), 275–285. https://doi.org/10.11113/jt.v75.3981
  5. Deepanraj, B., Sivasubramanian, V., & Jayaraj, S. (2017). Effect of substrate pre-treatment on biogas production through anaerobic digestion of food waste. International Journal of Hydrogen Energy, 42(42), 26522–26528. https://doi.org/10.1016/ j.ijhydene.2017.06.178
  6. Fernández Lucía. (2023, February 8). Number of biogas plants across India as of March 2021, by state.
  7. Ghaleb, A. A. S., Kutty, S. R. M., Ho, Y. C., Jagaba, A. H., Noor, A., Al-Sabaeei, A. M., & Almahbashi, N. M. Y. (2020). Response surface methodology to optimize methane production from mesophilic anaerobic co-digestion of oily-biological sludge and sugarcane bagasse. Sustainability (Switzerland), 12(5). https://doi.org/10.3390/ su12052116
  8. Giwa, S. O., Giwa, A., Zeybek, Z., & Hapoglu, H. (2013). Electrocoagulation Treatment of Petroleum Refinery Wastewater: Optimization through RSM Sensitivity Analysis of Multiphase Flow Using PROSPER View project Renewable energy. View project Electrocoagulation Treatment of Petroleum Refinery Wastewater: Optimization through RSM. https://www.researchgate.net/ publication/256444972
  9. Glivin, G., Kalaiselvan, N., Mariappan, V., Premalatha, M., Murugan, P. C., & Sekhar, J. (2021). Conversion of biowaste to biogas: A review of current status on techno-economic challenges, policies, technologies and mitigation to environmental impacts. Fuel, 302. https://doi.org/10.1016/j.fuel.2021.12115 3
  10. Gupta, P., Kurien, C., & Mittal, M. (2023). Biogas (a promising bioenergy source): A critical review on the potential of biogas as a sustainable energy source for gaseous fuelled spark ignition engines. In International Journal of Hydrogen Energy (Vol. 48, Issue 21, pp. 7747–7769). Elsevier Ltd. https://doi.org/10.1 016/j.ijhydene.2022.11.195
  11. Habashy, M. M., Ong, E. S., Abdeldayem, O. M., Al-Sakkari, E. G., & Rene, E. R. (2021). Food Waste: A Promising Source of Sustainable Biohydrogen Fuel. In Trends in Biotechnology (Vol. 39, Issue 12, pp. 1274–1288). Elsevier Ltd. https://doi.org/10.1016/ j.tibtech.2021.04.001
  12. Ibrahim, A., Muhammad, Y., Khalil Abubakar, I., & Muhammad, Y. Y. (2021). Article no.AJORIB.413 Original Research Article Abubakar et al. In Asian Journal of Research in Biosciences (Vol. 3, Issue 2). https://www.researchgate.net/publication/351558989
  13. Jyothilakshmi, R., & Prakash, S. V. (2016). Design, Fabrication and Experimentation of a Small Scale Anaerobic Biodigester for Domestic Biodegradable Solid Waste with Energy Recovery and Sizing Calculations. Procedia Environmental Sciences, 35, 749-755. https://doi.org/10.1016/j.proenv.2016.07. 085
  14. Leca, E., Zennaro, B., Hamelin, J., Carrère, H., & Sambusiti, C. (2023). Use of additives to improve collective biogas plant performances: A comprehensive review. Biotechnology Advances, 108129. https://doi. org/10.1016/j.biotechadv.2023.108129
  15. Lizama, A. C., Figueiras, C. C., Herrera, R. R., Pedreguera, A. Z., & Ruiz Espinoza, J. E. (2017). Effects of ultrasonic pre-treatment on the solubilization and kinetic study of biogas production from anaerobic digestion of waste activated sludge. International Biodeterioration and Biodegradation, 123, 1-9. https://doi.org/10.1016/j.ibiod.2017.05.020
  16. Montingelli, M. E., Benyounis, K. Y., Quilty, B., Stokes, J., & Olabi, A. G. (2016). Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland. Applied Energy, 177, 671–682. https://doi.org/10.1016/j.apenergy.2 016.05.150
  17. Mukherjee Abhijeet. (n.d.). Present Status And Essence Of Standards In The Indian Biogas Ecosystem.
  18. Nand, K., Sumithra Devi, S., Viswanath, P., Deepak, S., & Sarada, & R. (1991a). Anaerobic Digestion of Canteen Wastes for Biogas Production : Process Optimisation. In Process Biochemistry (Vol. 26).
  19. Nand, K., Sumithra Devi, S., Viswanath, P., Deepak, S., & Sarada, & R. (1991b). Anaerobic Digestion of Canteen Wastes for Biogas Production : Process Optimisation. In Process Biochemistry (Vol. 26).
  20. Ounnar, A., Benhabyles, L., & Igoud, S. (2012). Energetic valorization of biomethane produced from cow-dung. Procedia Engineering, 33, 330–334. https://doi.org/10.1 016/j.proeng.2012.01.1211
  21. Pei, P., Zhang, C., Li, J., Chang, S., Li, S., Wang, J., Zhao, M., Jiang, L., Yu, M., & Chen, X. (n.d.). Optimization of NaOH Pre-treatment for Enhancement of Biogas Production of Banana Pseudo-Stem Fiber using Response Surface Methodology.
  22. Quiroga, G., Castrillón, L., Fernández-Nava, Y., Marañón, E., Negral, L., Rodríguez-Iglesias, J., & Ormaechea, P. (2014a). Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge. Bioresource Technology, 154, 74–79. https://doi.org/10.1016/j.biortech.2013.11. 096
  23. Quiroga, G., Castrillón, L., Fernández-Nava, Y., Marañón, E., Negral, L., Rodríguez-Iglesias, J., & Ormaechea, P. (2014b). Effect of ultrasound pre-treatment in the anaerobic co-digestion of cattle manure with food waste and sludge. Bioresource Technology, 154, 74–79. https://doi.org/10.1016/j.biortech.2013.11. 096
  24. R. C. Assunção, L., A. S. Mendes, P., Matos, S., & Borschiver, S. (2021). Technology roadmap of renewable natural gas: Identifying trends for research and development to improve biogas upgrading technology management. Applied Energy, 292. https:// doi.org/10.1016/j.apenergy.2021.116849
  25. Sagastume Gutiérrez, A., Mendoza Fandiño, J. M., Cabello Eras, J. J., & Sofan German, S. J. (2022). Potential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia). In Development Engineering (Vol. 7). Elsevier Ltd. https://doi.org/10.1016/j.deveng.2022.100 093
  26. Sawatdeenarunat, C., Wangnai, C., Songka- siri, W., Panichnumsin, P., Saritpongteeraka, K., Boonsawang, P., Khanal, S. K., & Chaiprapat, S. (2019). Biogas production from industrial effluents. In Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (pp. 779–816). Elsevier. https://doi.org/10.10 16/B978-0-12-816856-1.0 0032-4
  27. Stat-Ease Handbook for Experimenters. (n.d.). www.statease.com
  28. Stephen Bernard, S., Srinivasan, T., Suresh, G., Ivon Paul, A., Mohideen Fowzan, K., & Ashwin Kishore, V. (2020a). Production of biogas from anaerobic digestion of vegetable waste and cow dung. Materials Today: Proceedings, 33, 1104–1106. https://doi.org/ 10.1016/j.matpr.2020.07.129
  29. Stephen Bernard, S., Srinivasan, T., Suresh, G., Ivon Paul, A., Mohideen Fowzan, K., & Ashwin Kishore, V. (2020b). Production of biogas from anaerobic digestion of vegetable waste and cow dung. Materials Today: Proceedings, 33, 1104–1106. https://doi.org/ 10.1016/j.matpr.2020.07.129
  30. Tumusiime, E., Kirabira, J. B., & Musinguzi, W. B. (2023). An integrated energy recovery system for productive biogas applications: Continuous mode operation and assessment. Energy Reports, 9, 4532–4546. https://doi.org /10.1016/j.egyr.2023.03.097
  31. Vijayakumar, P., Ayyadurai, S., Arunachalam, K. D., Mishra, G., Chen, W. H., Juan, J. C., & Naqvi, S. R. (2022). Current technologies of biochemical conversion of food waste into biogas production: A review. Fuel, 323. https://doi.org/10.1016/j.fuel.2022.124321
  32. Viswanath, P., Sumithra Devi, S., & Nand, K. (1992a). Anaerobic Digestion of Fruit and Vegetable Processing Wastes for Biogas Production. In Bioresource Technology, 40.
  33. Viswanath, P., Sumithra Devi, S., & Nand, K. (1992b). Anaerobic Digestion of Fruit and Vegetable Processing Wastes for Biogas Production. Bioresource Technology, 40.
  34. Viswanath, P., Sumithra Devi, S., & Nand, K. (1992c). Anaerobic Digestion of Fruit and Vegetable Processing Wastes for Biogas Production. Bioresource Technology, 40.
  35. Xu, Z. X., Song, H., Zhang, S., Tong, S. Q., He, Z. X., Wang, Q., Li, B., & Hu, X. (2019). Co-hydrothermal carbonization of digested sewage sludge and cow dung biogas residue: Investigation of the reaction characteristics. Energy, 187. https://doi.org/10.1016/j.energy. 2019.115972
  36. Zeynali, R., Khojastehpour, M., & Ebrahimi-Nik, M. (2017). Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale market wastes. Sustainable Environment Research, 27(6), 259–264. https://doi.org/10.1016/j.serj.2017.07.001
  37. Zou, S., Wang, X., Chen, Y., Wan, H., & Feng, Y. (2016). Enhancement of biogas production in anaerobic co-digestion by ultrasonic pre-treatment. Energy Conversion and Management, 112, 226–235. https://doi. org/10.1016/j.enconman.2015.12.087
  38. Wahidin S, Idris A, Yusof NM, Kamis NHH, Shaleh SRM. Optimization of the ionic liquid-microwave assisted one-step biodiesel production process from wet microalgal biomass. Energy Convers Manag [Internet]. 2018;171(June):1397–404. Available from: https://doi.org/10.1016/j.enconman.2018.06.083
Abstract Views: 10
PDF Views: 58

Advanced Search

News/Events

Indira School of Bus...

Indira School of Mangement Studies PGDM, Pune Organizing Internatio...

Indira Institute of ...

Indira Institute of Management, Pune Organizing International Confe...

D. Y. Patil Internat...

D. Y. Patil International University, Akurdi-Pune Organizing Nation...

ISBM College of Engi...

ISBM College of Engineering, Pune Organizing International Conferen...

Periyar Maniammai In...

Department of Commerce Periyar Maniammai Institute of Science &...

Institute of Managem...

Vivekanand Education Society's Institute of Management Studies ...

Institute of Managem...

Deccan Education Society Institute of Management Development and Re...

S.B. Patil Institute...

Pimpri Chinchwad Education Trust's S.B. Patil Institute of Mana...

D. Y. Patil IMCAM, A...

D. Y. Patil Institute of Master of Computer Applications & Managem...

Vignana Jyothi Insti...

Vignana Jyothi Institute of Management International Conference on ...

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.