Journal Press India®

Extensive Review of Advancements in Telecommunications/IoT with MEMS and RF Passives

Vol 11 , Issue 1 , January - March 2023 | Pages: 97-116 | Research Paper  

https://doi.org/10.51976/ijari.1112311

| | |


Author Details ( * ) denotes Corresponding author

1. * Chitrasen Maitry, Student, Department of Production Engineering, Delhi Technological University, New Delhi, Delhi, India (ichitrasenmaitry@gmail.com)
2. Hrishikesh Raj, Student, Department of Production Engineering, Delhi Technological University, New Delhi, Delhi, India
3. Singye Wangchuk, Student, Department of Production Engineering, Delhi Technological University, New Delhi, Delhi, India
4. Ashok Kumar Madan, Professor, Department of Mechanical Engineering, Delhi Technological University, New Delhi, Delhi, India

This paper presents an extensive review of the recent advancements in telecommunications and the Internet of Things (IoT) with a focus on Micro-Electro-Mechanical Systems (MEMS) technology. The paper explores the different types of MEMS devices used in these domains, their applications, and the challenges faced by these systems. Additionally, the future potential and trends of MEMS technology in the field of telecommunications and IoT are also discussed. The paper also highlights the future of 5G and the need for RF passives, including wideband switches, adjustable filters, multi-state impedance matching tuners, programmable digital step attenuators, analog wideband phase shifters, phase-shifting hybrid devices, and monolithically integrated miniature antennas. The paper then provides an overview of the market exploitation of RF-MEMS technology, starting from its early vision and actual limiting factors to its current situation and future perspectives. The authors also discuss recent findings in the RF-MEMS state of the art research scenario. Lastly, the paper focuses on the future of 5G technology and the need for RF passives in this field. Overall, this paper presents a comprehensive review of MEMS technology and its potential impact on the telecommunications and IoT industries.

Keywords

Telecommunications; Internet of Things (IoT); Internet of Everything (IoE) 5G; Micro-Electro-Mechanical Systems (MEMS); Sensors; Actuators; Pressure sensors; Future potential; Data transmission; Consumer electronics industry; Technical advancements; Technological innovation; MEMS integration; Radio frequency passives (RF) RF-MEMS.

  1. Chen, J., Li, Y., Zhang, X., & Li, J. (2019). IoT-based intelligent transportation system: A review. Sensors, 19(6), 1292. https://doi.org/10.3390/s19061292
  2. Jung, Y., Lee, K., & Kim, J. (2018). IoT communication technologies and protocols: A survey. Journal of Ambient Intelligence and Humanized Computing, 9(3), 133-155. 
  3. Khan, M. A., Shafique, M., & Alrajeh, N. (2018). IoT security: A review of challenges, solutions, and future research directions. Future Generation Computer Systems, 84, 158-173. 
  4. Li, Y., Zhang, H., & Zhang, Y. (2020). IoT security and privacy: A review of current research and future directions. Journal of Network and Computer Applications, 144, 102249. 
  5. Nakamura, S. (2000). The history and future of MEMS. Journal of Micromechanics and Microengineering, 10(2), 99-111.
  6. Bae, H., Chen, C., Ahn, J., & Kim, S. (2021). Advancements in MEMS technology for biomedical applications. Journal of Micromechanics and Microengineering, 31(2), 023001.
  7. Gao, H., Li, Y., & Zhang, X. (2020). Recent Advances in MEMS Sensors and Actuators. Micromachines, 11(1), 64.
  8. Hahn, J., Jeon, J., Kim, J., & Kim, Y. (2021). Micro-electromechanical systems: Advancements, challenges, and future directions. Journal of Micromechanics and Microengineering, 31(5), 053001.
  9. Liu, W., Chen, J., Cheng, S., & Cui, Y. (2020). MEMS-based solutions for 5G and beyond. Micromachines, 11(7), 641.
  10. Rahimian, M., Lai, S., & Sadeghi, M. (2021). Advancements in MEMS and sensors for IoT: A review. Sensors, 21(2), 429.
  11. Liu, X., & Wang, X. (2019). MEMS-based wearable devices: A review. Sensors, 19(18), 3949.
  12. Zhou, Y., Wang, X., & Li, X. (2019). MEMS technology in smart home systems: A review. Sensors, 19(6), 1247.
  13. Sari, A., & Alatas, B. (2019). MEMS technology in industrial internet of things: A review. Sensors, 19(13), 2872.
  14. K. H. Lee, Y. C. Kim, and S. H. Lee, “Challenges and Opportunities in Micro-Electromechanical Systems (MEMS) for IoT,” Sensors, vol. 17, no. 7, p. 1694, Jul. 2017.
  15. A. Shafik and E. Abdulraheem, “Integration of MEMS with CMOS for IoT Applications,” Journal of Emerging Technologies in Computing and Information Sciences, vol. 8, no. 2, pp. 56-66, Mar. 2018.
  16. J. Guo, H. Liu, and D. Chen, “Low Power Consumption Design for MEMS Devices in IoT,” Journal of Sensors, vol. 2018, pp. 1-10, Sep. 2018.
  17. Y. Li, L. Li, and Z. Zhang, “Cost-Effective Fabrication of MEM Sensors,” Microsystem Technologies, vol. 24, no. 10, pp. 3719-3726, Oct. 2018.
  18. Y. Kim, J. Kim, and S. Lee, “Sensitivity Limitations of MEMS Devices for IoT Applications,” Journal of Sensors, vol. 2019, pp. 1-9, Mar. 2019.
  19. Z. Chen and Y. Li, “Complexity Limitations of MEMS Devices for IoT Applications,” Microsystem Technologies, vol. 25, no. 11, pp. 4329-4336, Nov. 2019.
  20. L. Zhang and X. Liu, “Performance Limitations of MEMS Devices for IoT Applications,” Journal of Emerging Technologies in Computing and Information Sciences, vol. 9, no. 3, pp. 104-114, Jun. 2019.
  21. J. Ma and J. Chen, “Design Constraints of MEMS Devices for IoT Applications,” Journal of Emerging Technologies in Computing and Information Sciences, vol. 10, no. 1, pp. 45-54, Jan. 2020.
  22. Y. Wang and Y. Liu, “Interference Challenges in MEMS Devices for IoT Applications,” Microsystem Technologies, vol. 26, no. 12, pp. 4903-4910, Dec. 2020.
  23. L. Sun and D. Zhou, “Packaging Challenges in MEMS Devices for IoT Applications,” Journal of Sensors, vol. 2021, pp. 1-9, Jan. 2021.
  24. Q. Liu and J. Zhang, “Operating Condition Limitations of MEMS Devices for IoT Applications,” Journal of Emerging Technologies in Computing and Information Sciences, vol. 11, no. 2, pp. 67-76, Feb. 2021.
  25. J. Han and X. Lu, “Dynamic Range Limitations of MEMS Devices for IoT Applications,” Journal of Sensors, vol. 2022, pp. 1-9, Mar. 2022.
  26. H. Li and X. Chen, “Limited Scalability of MEMS Devices for IoT Applications,” Microsystem Technologies, vol. 27, no. 1, pp. 83-90, Jan. 2021.
  27. Bandyopadhyay, D., Roy Chowdhury, D., Dey, N., & Islam, S. M. R. (2020). Blockchain-Enabled MEMS-Based IoT for Supply Chain Management: A Review, Taxonomy, Opportunities and Challenges. IEEE Access, 8, 191381-191405.
  28. Wei, W., Wang, S., Gao, X., Liu, Y., & Cao, X. (2021). Integration of MEMS with 5G and Edge Computing for Advanced IoT Applications: A Review. IEEE Sensors Journal, 21(1), 56-73.
  29. Chen, Z., Lin, X., & Huang, Z. (2020). A MEMS-Based Energy Harvesting and Power Management System for Low-Power IoT Devices. IEEE Transactions on Industrial Electronics, 67(11), 9075-9085.
  30. Zhang, H., Zhang, L., Wu, Y., & Lu, Y. (2021). Real-time monitoring of indoor air quality using MEMS-based sensors and AI algorithms in smart homes. Sensors and Actuators B: Chemical, 329, 129223.
  31. Wang, Z., Cheng, Y., Zhang, J., & Zhang, J. (2020). A MEMS-Based Optical Switch for Data Center Networks. IEEE Photonics Technology Letters, 32(24), 1536-1539.
  32. Chen, Z., Wu, Y., Xu, Z., Huang, Y., Wang, M., & Sun, D. (2021). MEMS-Based Sensing and Actuation System for Smart City Applications. IEEE Access, 9, 17660-17669.
  33. Liu, Z., Chen, X., Liu, Y., Zhang, X., Wang, K., & Xie, L. (2021). A MEMS-Based Biochip for Rapid and Sensitive Detection of Cancer Biomarkers. IEEE Sensors Journal, 21(4), 4549-4555.
  34. Hui, H., Li, S., & Zhang, T. (2021). A MEMS-Based Energy Harvesting Device Using Piezoelectric Materials. IEEE Transactions on Industrial Electronics, 68(2), 1349-1356.
  35. Kim, J., Choi, Y., Kwon, H., Kang, J., & Kim, K. (2020). MEMS-Based Sensor Network for Real-Time Monitoring of Soil Moisture, Temperature, and Humidity for Smart Agriculture. IEEE Sensors Journal, 20(11), 5858-5866.
  36. Zhang, X., Zhang, M., Zhang, Y., & Wang, L. (2021). Integration of MEMS with Quantum Computing for Advanced Sensing Applications: A Review. IEEE Sensors Journal, 21(3), 3139-3148.
  37. Allan, R., 2013. RF MEMS Switches are Primed for Mass-Market Applications.
  38. Baghchehsaraei, Z., Shah, U., Dudorov, S., Stemme, G., Oberhammer, J., Åberg, J., 2012. MEMS 30 mm-thick W-band waveguide switch . In: Proc. 42nd European Microwave Conference, Amsterdam, pp. 1055–1058  .
  39. Baldemair, R., Irnich, T., Balachandran, K., Dahlman, E., Mildh, G., Sely ́ n, Y., Parkvall, S., Meyer, M., Osseiran, A., 2015. Ultra-dense networks in millimeter-wave frequencies. IEEE Commun. Mag. 53, 202–208.
  40. Bhushan, N., Li, J., Malladi, D., Gilmore, R., Brenner, D., Damnjanovic, A., Sukhavasi, R., Patel, C., Geirhofer, S., 2014. Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun. Mag. 52, 82–89.
  41. Boccardi, F., Heath, R.W., Lozano, A., Marzetta, T.L., Popovski, P., 2014. Five disruptive technology directions for 5G. IEEE Commun. Mag. 52, 74–80.
  42. Cavendish Kinetics, 2014. Nubia adopts Cavendish Kinetics’ SmarTune Antenna Tuning Solution for its new Z7 LTE Smartphone.
  43. Cohn, M.B., Roehnelt, R., Xu, J.-H., Shteinberg, A., Cheung, S., 2002. MEMS packaging on a budget (fiscal and thermal). In: Proc. IEEE International Conference on Electronics, Circuits and Systems ICECS, Dubrovnik, pp. 287–290.
  44. De Silva, A.P., Hughes, H.G., 2003. The package integration of RF-MEMS switch and control IC for wireless applications. IEEE Trans. Adv. Packag. 26, 255– 260.
  45. DeLisle, J.-J., 2015. 6 Degrees of Microwave and RF/Microwave Switch Separation. 
  46. DeNatale, J., Mihailovich, R., 2003. RF MEMS reliability. In: Proc. International Conference on Solid-State Sensors, Actuators and Microsystems TRANSDUCERS, Boston, pp. 943–946.
  47. Domingue, F., Fouladi, S., Mansour, R.R., 2010. A reconfigurable impedance matching network using dual-beam MEMS switches for an extended operating frequency range. In: Proc. IEEE MTT-S International Microwave Symposium, Anaheim, p. 1. Econocom, 2016. Internet of Things.
  48. Elshurafa, A.M., Salama, K.N., 2013. RF MEMS Capacitors and Variable Capacitors – The Future of Wireless Communication. http://repository.kaust.edu.sa/kaust/handle/10754/322934
  49. Fettweis, G.P., 2014. The tactile internet: applications and challenges. IEEE Veh. Technol. Mag. 9, 64–70.
  50. Jin, Y., Wang, Z., Chen, J., 2010. Introduction to Microsystem Packaging Technology. CRC Press, Boca Raton.
  51. Jourdain, A., Ziad, H., De Moor, P., Tilmans, H.A.C., 2003. Wafer-scale 0-level packaging of (RF-)MEMS devices using BCB. In: Proc. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS DTIP, Cannes, pp. 239–244.
  52. Katehi, L.P.B., Rebeiz, G.M., Nguyen, C.T.-C., 1998. MEMS and Si-micromachined components for low-power, high-frequency communications systems. In: Proc. IEEE MTT-S International Microwave Symposium, Baltimore, pp. 331–333.
  53. Kuang, K., Kim, F., Cahill, S.S. (Eds.), 2010. RF and Microwave Microelectronics Packaging. first ed. Springer, Berlin.
  54. Iannacci, J., 2013. Practical Guide to RF MEMS. Wiley VCH, Weinheim.
  55. Iannacci, J., Faes, A., Mastri, F., Masotti, D., Rizzoli, V., 2010. A MEMS-based wide-band multi-state power attenuator for radio frequency and microwave applications. In: Proc. NSTI Microtech, Anaheim, pp. 328–331.
  56. Iannacci, J., 2015a. Reliability of MEMS: a Perspective on failure mechanisms, improvement solutions and best practices at development level. Displays 37, 62–71.
  57. Iannacci, J., Tian, J., Sosin, S., Gaddi, R., Bartek, M., 2006. Hybrid wafer-level packaging for RF-MEMS applications. Proc. In: International Wafer-Level Packaging Conference IWLPC, San Jose, pp. 106–113.
  58. Iannacci, J., Bartek, M., Tian, J., Gaddi, R., Gnudi, A., 2008. Electromagnetic optimization of an RF-MEMS wafer-level package. Sens. Actuators, A 142, 434–441.
  59. Iannacci, J., 2015b. RF-MEMS: an enabling technology for modern wireless systems bearing a market potential still not fully displayed. Microsyst. Technol. 21, 2039–2052.
  60. Iannacci, J., Tschoban, C., Reyes, J., Maaß, U., Huhn, M., Ndip, I., Pötter, H., 2016. RF- MEMS for 5G mobile communications: a basic attenuator module demonstrated up to 50 GHz. In: Proc. IEEE Sensors 2016, Orlando, pp. 448–450.
  61. Iannacci, J., Huhn, M., Tschoban, C., Potter, H., 2016b. RF-MEMS technology for 5G: series and shunt attenuator modules demonstrated up to 110GHz. IEEE Electron Device Lett. 37. 1558–0563.
  62. Iannacci, J., Huhn, M., Tschoban, C., Potter, H., 2016c. RF-MEMS Technology for future (5G) mobile and high-frequency applications: reconfigurable 8-bit power attenuator tested up to 110 GHz. IEEE Electron Device Lett. 37, 1646–1649.
  63. Iannacci, J., Tschoban, C., 2017. RF-MEMS for future mobile applications: experimental verification of a reconfigurable 8-bit power attenuator up to 110 GHz. J. Micromech. Microeng. 27, 1–11.
  64. Lahti, M., Kautio, K., Ollila, J., Vähä-Heikkilä, T., Kaunisto, M., 2013. Hermetic packaging for millimetre wave applications. In: Proc. European Microelectronics Packaging Conference EMPC, Grenoble, pp. 1–5.
  65. Lapedus, M., 2015. Inside The 5G Smartphone.
  66. Le, L.B., Lau, V., Jorswieck, E., Dao, N.-D., Haghighat, A., Kim, D.I., Le-Ngoc, T., 2015. Enabling 5G mobile wireless technologies. J. Wireless Commun. Networking, 1– 14.
  67. Lisec, T., Huth, C., Wagner, B., 2004. Dielectric material impact on capacitive RF MEMS reliability. In: Proc. 34th European Microwave Conference, Amsterdam, pp. 73–76.
  68. Lu, A.C.W., Chua, K.M., Li, H.G., 2005. Emerging manufacturing technologies for RFIC, antenna and RF-MEMS integration. In: Proc. IEEE International Workshop on Radio-Frequency Integration Technology: Integrated Circuits for Wideband Communication and Wireless Sensor Networks, Singapore, pp. 142–146.
  69. Margomenos, A., Katehi, L.P.B., 2002. DC to 40 GHz on-wafer package for RF MEMS switches. In: Proc. IEEE Topical Meeting on Electrical Performance of Electronic Packaging, Monterey, pp. 91–94.
  70. Margomenos, A., Katehi, L.P.B., 2003. High frequency parasitic effects for on-wafer packaging of RF MEMS switches. In: Proc. IEEE MTT-S International Microwave Symposium, Philadelphia, pp. 1931–1934.
  71. Martin, M.J.C., 1994. Managing Innovation and Entrepreneurship in Technology- Based Firms. John Wiley & Sons, Hoboken.
  72. Melle, S., Flourens, F., Dubuc, D., Grenier, K., Pons, P., Pressecq, F., Kuchenbecker, J., Muraro, J.L., Bary, L., Plana, R., 2003. Reliability overview of RF MEMS devices and circuits. In: Proc. 33rd European Microwave Conference, Munich, pp. 37–40.
  73. Moskvitch, K., 2015. Tactile internet: 5G and the Cloud on steroids.
  74. Nguyen, C.T.-C., 1998. Microelectromechani cal devices for wireless communications. In: Proc. IEEE 11th International Conference on Micro Electro Mechanical Systems MEMS, Heidelberg, pp. 1–7.
  75. Nguyen, C.T.-C., 2001. Transceiver front-end architectures using vibrating micromechanical signal processors. In: Proc. Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Ann Arbor, pp. 23–32.
  76. Nguyen, C.T.-C., 2002. RF MEMS for wireless applications. In: Proc. Device Research Conference DRC, Santa Barbara, pp. 9–12.
  77. Nguyen, C.T.-C., 2006. Integrated micromechanical circuits for RF front ends. In: Proc. European Solid-State Circuits Conference ESSCIRC, Montreux, pp. 7–16.
  78. Nguyen, C.T.-C., 2007. MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 251–270.
  79. Nguyen, C.T.-C., 2013. MEMS-based RF channel selection for true software-defined cognitive radio and low-power sensor communications. IEEE Commun. Mag. 51, 110–119.
  80. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Taoka, H., Tullberg, H., Uusitalo, M.A., Timus, B., Fallgren, M., 2014. Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52, 26–35.
  81. Pacheco, S., Zurcher, P., Young, S., Weston, D., Dauksher, W., 2004. RF MEMS resonator for CMOS back-end-of-line integration. In: Proc. Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Atlanta, pp. 203–206.
  82. Park, Y.-K., Park, H.-W., Lee, D.-J., Park, J.-H., Song, I.-S., Kim, C.-W., Song, C.-M., Lee, Y.-H., Kim, C.-J., Ju, B.K., 2002. A novel low-loss wafer-level packaging of the RF- MEMS devices. In: Proc. IEEE 15th International Conference on Micro Electro Mechanical Systems MEMS, Las Vegas, pp. 681–684.
  83. Park, Y.-K., Kim, Y.-K., Hoon, K., Lee, D.-J., Kim, C.-J., Ju, B.-K., Park, J.-O., 2003. A novel thin chip scale packaging of the RF-MEMS devices using ultra thin silicon. In: Proc. IEEE 16th International Conference on Micro Electro Mechanical Systems MEMS, Kyoto, pp. 618–621.
  84. Rizk, J.B., Chaiban, E., Rebeiz, G.M., 2002. Steady state thermal analysis and high- power reliability considerations of RF MEMS capacitive switches. In: Proc. IEEE MTT-S International Microwave Symposium, Seattle, pp. 239–243.
  85. Rizk, J., Tan, G.-L., Muldavin, J.B., Rebeiz, G.M., 2001. High-isolation W-band MEMS switches. IEEE Microwave Wireless Compon. Lett. 11, 10–12.
  86. STATS ChipPAC, 2017. Packaging Technology Overview.
  87. Stehle, A., Georgiev, G., Ziegler, V., Schoenlinner, B., Prechtel, U., Seidel, H., Schmid, U., 2008. RF-MEMS switch and phase shifter optimized for W-band. In: Proc. 38th European Microwave Conference, Amsterdam, pp. 104–107.
  88. Th Rijks, G.S.M., van Beek, J.T.M., Ulenaers, M.J.E., De Coster, J., Puers, R., den Dekker, A., van Teeffelen, L., 2003. Passive integration and RF MEMS: a toolkit for adaptive LC circuits. In: Proc. European Solid-State Circuits Conference ESSCIRC, Estoril, pp. 269–272.
  89. Uckelmann, D., Harrison, M., Michahelles, F. (Eds.), 2011. Architecting the Internet of Things. first ed. Springer, Berlin.
  90. Wu, G., Talwar, S., Johnsson, K., Himayat, N., Johnson, K.D., 2011. M2M: From mobile to embedded internet. IEEE Commun. Mag. 49, 36–43.
  91. Zhang, Q.X., Yu, A.B., Yang, R., Li, H.Y., Guo, L.H., Liao, E.B., Tang, M., Kumar, R., Liu, A. Q., Lo, G.Q., Balasubramanian, N., Kwong, D.L., 2006. Novel monolithic integration of RF-MEMS switch with CMOS-IC on organic substrate for compact RF system. In: Proc. International Electron Devices Meeting IEDM, San Francisco, pp. 1–4.
  92. Ziegler, V., Siegel, C., Schonlinner, B., Prechtel, U., Schumacher, H., 2005. RF-MEMS switches based on a low-complexity technology and related aspects of MMIC integration. In: Proc. European Gallium Arsenide and Other Semiconductor Application Symposium EGAAS, Paris, pp. 289–292.
  93. Vidojkovic, M. Configurable Circuits and Their Impact on Multi-Standard RF Front-End Architectures, 1st ed.; Technische Universiteit Eindhoven: Eindhoven, The Netherkands, 2011.
  94. The Evolution of Mobile Technologies: 1G to 2G to 3G to 4G LTE. Available online: https://www.qualcomm.com/documents/evolution-mobile-technologies-1g-2g-3g-4g-lte (accessed on 18 March 2020).
  95. Santhi, K.R.; Srivastava, V.K.; SenthilKumaran, G.; Butare, A. Goals of true broad band’s wireless next wave (4G-5G). In Proceedings of the IEEE Vehicular Technology Conference (VTC), Orlando, FL, USA, 6–9 October 2003; pp. 2317–2321.
  96. Halonen, T.; Romero, J.; Melero, J. (Eds.) GSM, GPRS and EDGE Performance: Evolution towards 3G/UMTS, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003; pp. 1–615.
  97. Gupta, A.; Jha, R.K. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access 2015, 3, 1206–1232. [CrossRef] 20. Sesia, S.; Toufik, I.; Baker, M. (Eds.) LTE – The UMTS Long Term Evolution: From Theory to Practice, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 1–792.
  98. LTE TDD — The Global Solution for Unpaired Spectrum. Available online: https://www.qualcomm.com/ documents/lte-tdd-global-solution-unpaired-spectrum (accessed on 19 March 2020).
  99. Nguyen, V.-G.; Do, T.-X.; Kim, Y.H. SDN and Virtualization-Based LTE Mobile Network Architectures: A Comprehensive Survey. Wirel. Pers. Commun. 2015, 86, 1401–1438.
  100. Xiang, W.; Zheng, K.; Shen, X.S. (Eds.) 5G Mobile Communications, 1st ed.; Springer International Publishing, Cham: Basel, Switzerland, 2017; pp. 1–691.
  101. Evolving LTE to Fit the 5G Future. Available online: https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/evolving-lte-to-fit-the-5g-future (accessed on 19 March 2020).
  102. 5G Network Architecture A High-Level Perspective. Available online: http://www.huawei.com/minisite/hwmbbf16/insights/5G-Nework-Architecture-Whitepaper-en.pdf (accessed on 19 March 2020).
  103. Osseiran, A.; Boccardi, F.; Braun, V.; Kusume, K.; Marsch, P.; Maternia, M.; Queseth, O.; Schellmann, M.; Schotten, H.; Taoka, H.; et al. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag. 2014, 52, 26–35.
  104. Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195.
  105. Hilt, A. Availability and Fade Margin Calculations for 5G Microwave and Millimeter-Wave Anyhaul Links. MDPI Appl. Sci. 2019, 9, 5240.
  106. Nam, W.; Bai, D.; Lee, J.; Kang, I. Advanced interference management for 5G cellular networks. IEEE Commun. Mag. 2014, 52, 52–60.
  107. Wyglinski, A.M.; Nekovee, N.; Hou, T. (Eds.) Cognitive Radio Communications and Networks: Principles and Practice, 1st ed.; Academic Press: Amsterdam, The Netherlands, 2009; pp. 1–736.
  108. Irnich, T.; Kronander, J.; Selén, Y.; Li, G. Spectrum sharing scenarios and resulting technical requirements for 5G systems. In Proceedings of the IEEE PIMRC, London, UK, 8–9 September 2013; pp. 127–132.
  109. Tehrani, M.N.; Uysal, M.; Yanikomeroglu, H. Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Commun. Mag. 2014, 52, 86–92.
  110. Orsino, A.; Gapeyenko, M.; Militano, L.; Moltchanov, D.; Andreev, S.; Koucheryavy, Y.; Araniti, G. Assisted Handover Based on Device-to-Device Communications in 3GPP LTE Systems. In Proceedings of the IEEE Globecom Workshops, San Diego, CA, USA, 6–10 December 2015; pp. 1–6.
  111. Iannacci, J. RF-MEMS Technology for High-Performance Passives: The Challenge of 5G Mobile Applications, 1st ed.; IOP Publishing: Bristol, UK, 2017; pp. 1–166.
  112. Iannacci, J. Internet of Things (IoT); Internet of Everything (IoE); Tactile Internet; 5G — A (Not So Evanescent) Unifying Vision Empowered by EH-MEMS (Energy Harvesting MEMS) and RF-MEMS (Radio Frequency MEMS). Sens. Actuators A Phys. 2018, 272, 187–198.
  113. Iannacci, J. RF-MEMS for High-Performance and Widely Reconfigurable Passive Components — A Review with Focus on Future Telecommunications, Internet of Things (IoT) and 5G Applications. J. King Saud Univ. Sci. 2017, 29, 436–443.
  114. Iannacci, J. RF-MEMS technology as an enabler of 5G: Low-loss ohmic switch tested up to 110 GHz. Sens. Actuators A Phys. 2018, 279, 624–629.
  115. Prasad, R. Surface Mount Technology—Principles and Practice, 2nd ed.; Springer Science + Business Media: Dordrecht, The Netherlands, 1997; pp. 1–772.
  116. Lee, Y.C.; Cheng, Y.-T.; Ramadoss, R. (Eds.) MEMS Packaging, 1st ed.; World Scientific: Singapore, 2018; pp. 1–364.
  117. Iannacci, J.; Bartek, M.; Tian, J.; Gaddi, R.; Gnudi, A. Electromagnetic optimization of an RF-MEMS wafer-level package. Sens. Actuators A Phys. 2008, 142, 434–441.
  118. Tian, J.; Sosin, S.; Iannacci, J.; Gaddi, R.; Bartek, M. RF–MEMS wafer-level packaging using through-wafer interconnect. Sens. Actuators A Phys. 2018, 142, 442–451.
  119. Tian, J.; Iannacci, J.; Sosin, S.; Gaddi, R.; Bartek, M. RF-MEMS wafer-level packaging using through-wafer via technology. In Proceedings of the Electronics Packaging Technology Conference (EPTC), Singapore, 6–8 December 2006; pp. 441–447.
  120. Iannacci, J.; Gaddi, R.; Gnudi, A. Non-linear electromechanical RF model of a MEMS varactor based on veriloga© and lumped-element parasitic network. In Proceedings of the European Microwave Integrated Circuit Conference (EuMIC), Munich, Germany, 8–10 October 2007; pp. 544–547.
  121. Iannacci, J. Practical Guide to RF-MEMS, 1st ed.; Wiley-VCH: Weinheim, Germany, 2013; pp. 1–344
Abstract Views: 10
PDF Views: 53

Advanced Search

News/Events

Indira School of Bus...

Indira School of Mangement Studies PGDM, Pune Organizing Internatio...

Indira Institute of ...

Indira Institute of Management, Pune Organizing International Confe...

D. Y. Patil Internat...

D. Y. Patil International University, Akurdi-Pune Organizing Nation...

ISBM College of Engi...

ISBM College of Engineering, Pune Organizing International Conferen...

Periyar Maniammai In...

Department of Commerce Periyar Maniammai Institute of Science &...

Institute of Managem...

Vivekanand Education Society's Institute of Management Studies ...

Institute of Managem...

Deccan Education Society Institute of Management Development and Re...

S.B. Patil Institute...

Pimpri Chinchwad Education Trust's S.B. Patil Institute of Mana...

D. Y. Patil IMCAM, A...

D. Y. Patil Institute of Master of Computer Applications & Managem...

Vignana Jyothi Insti...

Vignana Jyothi Institute of Management International Conference on ...

By continuing to use this website, you consent to the use of cookies in accordance with our Cookie Policy.