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     Abstract 

Many practical queuing situations with congestion control mechanism due to 
high throughput demands in telecommunication systems, computer network 
and production systems can be formulated as finite queues with setup time and 
state dependent arrivals. This chapter deals with computational scheme to 
compute the exact stationary queue length distribution. In this chapter an 
efficient iterative algorithm is developed for computing the stationary queue  

length distribution in M/G/K/N queues with setup time and arbitrary state 
dependent arrival rates. The overall computation of the algorithm is O(N2) is 
complexicity. It can be of great use in application since it is easy to implement 
fast and quite accurate. 

 

1. Introduction 

The arrival occur according to Poisson process 
which depends on the number of customers in the 
system. We consider a M/G/K/N queue with state-
dependent arrivals and set up time. Which was 
discussed earlier by Courtois and Georges (1971). The 
server has a set up time before serving the first 

customer who initializes a busy period which was best 
explained by Baker (1973) for the queue M/M/1 with 
exponential startup. Gordan and Newell (1967) also 
studied the queueing system with exponential servers. 
The service process is assumed to be independent of 
any process in system. The system can hold upto N 
customers including the one under service at any point 
of time. The service discipline is exhaustive and FCFS 

was studied by Shantikumar and Sumita (1985) of 
M/G/1/K queues with state dependent arrivals and 
FCFS/LCFS-p service disciplines. 

This model has a wide range of application in 
telecommunication systems, production system and 
inventory control. ATM (Asynchronous Transfer 
Mode) technique is now broadly accepted for 
constructing high speed multimedia communication 

networks which was again analyzed by Skelly et al. 
(1993) and a Histogram based Model for Video Traffic 
Behaviour in an ATM multiplexer was developed. 
Reiser (1982) studied performance evaluation of data 
communication systems and due to the high throughput 
demands, these networks usually employ simplified and 
universal congestion control mechanism which are 
based on input rate enforcement in order to  provide 

and maintain good quality of service (Q0S) Schmidt and 
Compbell (1993) also studied Protocol Traffic Analysis 
with application for ATM switch Design which was 
brought forth by Keshav et al. (1995) through the study 
of an empirical evaluation of virtual circuit holding 
policies in Ip-over ATM Network. 

 It is believed that in a densely connected 
network the aggregated arrival process to the 

intermediate node can be approximated by a Poisson  
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process suggested by Kee, and Towsley, (1986). A cell 
set up phase is generally needed before starting each 
busy period. This motivated up to study M(n)/G/K/N 
queue with set up time. 

Mn/G/K/N queues have been given relatively little 
attention. Kijima and Makimoto (1992) give numerical 

algorithms to compute the quasi-stationary distribution 
and other characteristics in Mn/G/1/N queues and 
GI/M(n)/1/N queues byusing Matrix-geometric method. 

Chaudhary, Gupta and Agarwal (1991) also 
examined computational analysis of distribution of 
numbers in system for M/G/1/N+1 and G/M/1/N+1 
queues using roots. Gong et al (1992) also provide a 
numerical algorithm based on Matrix-geometric method 

of M/G/1 queues with state dependent arrivals. 
Recently, Yang proposes a new approach for computing 
the stationary queue length distribution in M(n)/G/1/N 
queues and GI/Mn/1/N queues. In this paper we 
develop an algorithm for computing the stationary 
queue length distribution in Mn/G/K/N queues with 
setup time by using the method of supplementary and 
variables. Buzen; (1973) also suggested computational 
Algorithms for closed Queueing Network with 

exponential servers. The rest of the paper is organized 
as follows. The section 2 we derive the system 
equations by using the method of supplementary 
variables. An interactive algorithm with overall. 
Computation O(N2) in complexity is developed for 
computing the stationary queue length distribution of 
Mn/G/1/N with setup. 

2. System Euqations  

Consider a M(n)/G/K/N queue with setup time 

described in section 1. Let n be the arrival rate where 
there are n customers in the system. Since buffer size is N 
for n  N, n  = 0. It is assumed that n > 0 for 0  n  N – 1. 
The probability density function (pdf) of the service time 
and its corresponding Laplace transform (L.T.) are denoted 
by b (.) and B*(s), respectively. We denote the mean of the 
service time by Kµ.The pdf of the service time is deonted 
by a ( . ) with L.T. A*(s) and mean v. Let Q(t) be the number 
of customers in the system at time t. We define the 
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supplementary variable U(t) as the remaining service time 
or the remaining setup time at time t. Let 

 





.ttimeatupsettingisserver0

;ttimeatidlestaysorbusyisserver1
tR

 Clearly, the process {[Q(t), R(t), U(t)]; t  0} is a 
Markov chain. Define the steady state joint density 

functions of {[Q(t), R(t), U(t)]; t  0} as 

        

        










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Let Q be the number of customers in the system in 
steady state. Then, the stationary queue length distribution 
is given by P(Q=n), o  n < . By infinitestimal argument 
(idea given by Taylor and Karlin, (1994)), we have following 
steady state equations: 

  0P (Q=0) = f1(0), 

 
         ,ub0gub0fuf
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udf
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       ub0fufuf
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 
     ub0gu
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udf
N1N
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 
     ugua0QP

du

udg
110

1   

 
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du
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 
 ug

du

udg
1N1N

N
  

Denote 

    ,duufesP n
0

su*
n 


         n = 1, 2... N, 

    ,duugesq n
0

su*
n 


         n = 1, 2... N 

And    0QP0p*
0  . Since  0p*

0  and 

     nQP0q0p *
n

*
n   for 1  n  N are the 

stationary queue length distribution, our objective is to 

determine       Nn1,0q,0p,0p *
n

*
n

*
0  . 

Taking the Laplace transform of (1), we have 

    ,0f0p 1
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00 
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*
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 .... (2) 

         ,0g0ps*Asqs 1
*
00

*
11    

        ,1Nn2,0gsqsqs n
*

1n1n
*
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     0gsqssq N
*

1N1N
*
N    

By substituting s=0 into equation (2), we can have following 
lemma which gives expression of fn (0) and gn(0) in terms of 

  s'0p*
n  and   s'0q*

n  after some algebraic 

manipulations. 
Lemna 1 

   
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 ..... (3) 
We can eliminate fn(0)’s and gn(0)’s in (2) by using Lemma 
1. 
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For 2  n  N – 1. Setting s = 1 into the ith and the (N+1)th 
equations in (4) for i = 1, 2, …., N – 1 gives 
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 
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for 2  n  N – 1. We can also re-arrange some equations in 
(4) as 
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for 2  n  N – 1. Note that  sp*
n  and  sq*

n  for n  1 

in (6) are well-defined at s = n because both numerator 

and denominator of  sp*
n  and  sq*

n  for n  1 have 

zero at s = n. We denote (5) and (6) as the system 
equations. An iterative algorithm will be developed for 
computing the stationary queue length distributions 

      Nn1,0q0p,0p *
n

*
n

*
n   based on 

these equations. 

3. The Algorithm  

 In this section, we develop an efficient scheme for 
computing the stationary queue length distribution with 
overall computation 0(N2) in complexity. 
 From the system equations (5) and (6), there 
exist xn(s) and yn(s) such that 

     0psxsp *
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for n = 1, 2, …., N. By the normalization condition 
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Thus, from (7) and (8) 
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for 1  n  N. The next lemma provides a formula of xN(0) + 
yN(0) in terms of [xN(0), yN(0), 1  n  N – 1}. 
Lemma 2 

            0y0x1kµkµ0y0x nn

1N

1n
n0NN  





 

    ..... (10) 
Proof 
Adding equations in (4), we have 
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That is, 
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Observe that 
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Letting s  0 in above equation gives 
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The desired result follows immediately by using (7). 
In addition, the system blocking probability is given by 
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Therefore, from (8), (9) and (10), we only need to evaluate 

{xn(0), yn(0), 1  n  N – 1} to determine the stationary 
queue length distribution 

      Nn1,0q0p,0p *
n

*
n

*
0  . 

 We denote x0(s) = B*(s) and y0(s) = A*(s) for 
convenience. From (5), (6) and (7), we have 
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for 2  n  N – 1. Observe that in order to obtain {xn(0), 

yn(0), 1  n  N – 1), we still need to evaluate {xn–1(n), yn–

1(n), 1  n  N – 1}. Let w
(i)

(s) = [d
i
w(s)]/[ds

i
]. By some 

algebraic manipulations, one can have, 
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 ..... (12) 
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for 2  n  N – 1, i  1. 

Therefore, if k  n, 
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for 2  n  N – 1, i  1. 

 Otherwise, if  k = n, 
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     .... (14) 
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for 2  n  N – 1, i  0. 
 However, it is not necessary to evaluate all 

      ,y,x k
i

nk
i

n   0  n  N – 1, 0  i  N – 1, 1 

 k  N – 1} to calculate {xn(0), yn(0), 1  n  N – 1. An 
efficient scheme is developed in the following. 
For simplicity, we may assume that the arrival rates can be 
divided into m groups based on m + 1 threshold values N0 = 
0 < N1 < N2 < … < Nm = N such that 



 Volume 3, Issue 1 (2015) 103-109 ISSN 2347 - 3258 
International Journal of Advance Research and Innovation 

  107 
 IJARI 

,Ni

NNiN

NiN

Ni0

0
m1m
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
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  

for i  0, where 
21 NiNi   if i1  i2. This 

assumption is very practical, although it is not hard to 
modify the following algorithm to the general cases. 

Let l(k) = max  
ki

N,1  such that 

1kk ii NkN


  is the least positive number with 

l(k) = k. Denote Ln(k) as the number of i such that i = k 

for n + 1 < i  k, that is, Ln(k) = k – max [n+1, l(k)] for 0  n  

k – 1 and 2  k  N – 1. From above definitions, we 
immediately have following lemma : 
Lemma 3  

 For 0  n  k – 1, 2  k  N – 1, 

(1) If Ln(k)  1, k = k–1 and Ln (k) = Ln(k + 1)+1. 

(2) if n  k, Ln(k) = Ln–1(k). 

(3) if n = k, Ln(k) = Ln–1(k)–1. 
Lemma 4  

 If I = Ln-1 (k) + l(k) for 1  n  k – 1, 2  k  N – 1, 

then 
       1
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kL
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0`1n xx   

Proof : 

I = Ln-1(k) + l(k) = k-max[n, l(k)] + l(k)  k. 
On the other hand, I = Ln-1(k) + l(k)  l(k). Thus, by 

assumption on the arrival rates, 1 = k. Since we always 

have l(I)  1, 
L0(I) = I – max [1, l(I)] = I –l(I) = I – l(k) = Ln–1(k). 
We arrive at the desired result. 
Using Lemma 3 and lemma 4, (13) and (14) can be written 
as following: 

For n  k, 1  n  k – 1, 2  k  N – 1. 
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for n = k, 1  n  k – 1, 2  k  N – 1. 
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Observe that we only need to evaluate to 

      k
kL

nk
kL

n
nn y,x  , 0  n  k – 1, 2  k  N 

– 1} to obtain the stationary queue length distribution. In 
the following algorithm, e use xn(k), yn(k) to store 

      k
kL

n
kL

n
nn y,x   respectively. 

Algorithm 
Step 1: 

Given {n, 0  n  N – 1} and kµ, . 
 For 1  k  N – 1, find ik 

1k1
iki NkN


 such that and l(k)  max {1, 

ki
N } 
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  

Step 2: 
For k = 2, 3… N – 1, do 
(a) For n = 0, 1… k – 1, do 
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Ln (k)  k – max [n+1, l(k)]. 

If n  1, I  Ln-1(k) + l(k). 
If n = 0 then 
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End (n). 
(b)
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End (k). 

Step 3:      vkµ0y0x 0NN   

       0y0x1kµ kk
1N
1k k   


 

Step 4:  
     




N

1k kk 0y0x1

1
0QP  

Step 5: P(Q = k) [xn(0)+yk(0)] P(Q = 0)  for k = 1, 2, …., 
N. 
The above algorithm can be simplified further for the 
following two species cases of M(n)/G/k/N with setup time 
and state dependent arrivals : 
1. For M/G/k/N queues with setup time with arrival rates 

n=, we have l(k) = 1 and Ln(k) – n +1. 
2. For M(n)/G/k/N queues with setup time and distinct 

arrival rates, i.e. i  j for i  j, we have l(k) = k and 
Ln(k) = 0. Two well-known examples for this case are 

the ‘discouragement’ mechanism where n=/(n+1) 

and the machine interference problem where n=(N – 
n). 

Further we can use the above algorithm to obtain the 
stationary queue length distribution for M(n)/G/k/N 

queues by letting  = o and A*(s) = 1. 

4. Numerical Result 

In this section we use the algorithm to obtain the 
stationary queue length distribution in four M(n)/G/k/N 
queueing systems with or without setup times. The results 

for M(n)/E5/K/N without setup time for N  {10, 20, 30). 

The arrival rate is n = N – n if there are n customers in the 

system for 0  n  N. The other parameters for the 

algorithm are mean service time
15

1
 , the mean 

setup time =0 and A*(s) = 1. It is compared with the result 
given by Kijima and Makimoto (1992). 

Numerical result for M(n)/E5/k/N queues with set up 

time and N{10, 20, 3}. The arrival and the mean service 
time are the same while two types of set up time are 
chosen to test. The first one is exponential distribution with 
mean 1/30 and the other one is Erlang distribution with 2 
phases and mean 1/30. 

The results are compared by result given by Gong et al. 
(1992). 

5. Conclusion 

Two types of set up time are considered in this. The 
first queue has an exponential set up time, with mean 0.1 
while the second queue has deter ministic setup time 0.1. In 
conclusion, the algorithm is powerful for general cases and 

it is easy to implement, fast and quite accurate. 



 Volume 3, Issue 1 (2015) 103-109 ISSN 2347 - 3258 
International Journal of Advance Research and Innovation 

  109 
 IJARI 

References 
[1] K. J. Lee, D. Towsley, A comparison of priority-

based decentrailized load balancing policies. Proc. 
Performance 86 and ACM Sigmetrics Joint Conf, 
1986 

[2] M. Kijima nad, N. Makimoto, A unified approach to 
GI/M(n)/1/K and M(n)/1/K and M(n)/GI/1/K queue 

via finite quasi-birth-death processes. Stochastic 
Models, 8, 1992, 269-288 

[3] M. Kijima, N. Makimoto, Computation of the quasi-
stationary distributions in M(n)/GI/1/k and 
GI/M(n)/1/K queueing. Queueing Syst., 11, 1992, 
255-272  

[4] W. B. Goint, A. Yan, C. G. Cassandras, The M/G/1 
queue with queue-length dependent arrival rate. 

Stochastic Models 8, 733-741, 1992 
[5] P. Yang, An unified algorithm for computing the 

stationary queue length distributions in M(k)/G/1/N 
and CI/M(k)/1/N queues. Queueing Syst. To be 
published. 

[6] S. Karlin, H. M. Talor, A First Course in Stochastic 
Processes. (2nd Edn.) Academic Press, New York, 
1975 

[7] M. L. Chaudhry, G. L. Gupta, M. Agarwal, On 
exact computational analysis of distribution of 
numbers in systems for M/G/1/N+1 and 
GI/M/1/N+1 queues using roots. Computers Ops 
Res. 18, 1991, 679-694 

[8] P. J. Courtois, J. Georges, On a single-server finite 
queueing model with state-dependent arrival and 
service processes. Ops Res. 19, 424-435 (1971). 

[9] J. Keilson, Queues subject to service interruption. 
Ann. Math. Statist. 33, 1962, 1314 

[10] S. C. Niu and R.B. Cooper, Transform-free 
analysis of M/G/1/K and related queues. Maths 
Ops Res. To be published. 

[11] J. G. Shanthikumar nad, U. Sumita. On the busy 
period distributions of M/G/1/K queues with state 

dependent arrivals and FCFS/LCFS-P service 
disciplines. J. appl. Prob. 22, 1985, 912-919 

[12] P. D. Welch, On a generalized M/G/1 queueing 
process in which the first customer of each busy 
period receives exceptional service. Ops Res. 12, 

1964, 736-752 
[13] P. J. Courtois, J. Georges, On a single server finite 

queueing model with state dependent arrival and 
service processes. Ops Res (19), 1971, 424-435 

[14] K. R. Baker, A note on operating policies for the 
queue M/M/1 with exponential start up.' INFOR, 
11, 1973, 71-72 

[15] W. J. Gordan, G. F. Newell, Closed Queueing 

system with exponential server, Operations 
Research 15(2), 1967, 254-265 

[16] P. M. Skelly, M. Schwartz, S. Dixit, A Historgram 
– Based Model for video Traffic Behaviour in an 
ATM Multipleser. IEEE/ACM Trans. On 
Networking 1(4), 193, 446-459 

[17] M. Reiser, Performance Evaluation of Date 
Communication system – Proceedings of the IEEE 

70(2), , 1982, 171-195 
[18] A. Schmiolt, R. Canpbell, Internet Protical. Traffic 

Analysis with Applications for ATM switch Design. 
Computer Communication Review, 23(2), 1993, 39-52 

[19] S. Keshav, C. Lund, S. Phillip, N. Rein gold, H. Saran, 
An empirical evaluation of virtual circuit Holding 
Policies in Ip-over-ATM Network. IEEE ISAC, 1318, 
1995, 1371-1382 

[20] M. L. Chaudhary, U. L. Gupta, Agarwal On exact 
computational analysis of distribution of Numbers in 
system for M/G/1/N+1 and G/M/1/N+1 queues using 
roots. Computer UPS Res, 18, 1991, 679-694 

[21] J. P. Buzen, Computational Algorithms for closed 
Queueing Network with Exponential series, ACM, 
16(9), 1973, 527-531 

[22] H. M. Taylor, S. Karlin, An Introduction to Stochastic 
Modeling. Academic Press, 1994 

 

 
 

 
 


